
Computational Experiments in

Markov Chain Monte Carlo

by

Alexander D. Kaiser

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Mathematics

New York University

September, 2013

Professor Jonathan Goodman



c© Alexander D. Kaiser

All Rights Reserved, 2013



Acknowledgements

First, thank you to my advisor, Prof. Jonathan Goodman, whose guidance and

wisdom were essential to the entire project. He has been a great mentor and friend.

Thank you to Prof. Andreas Klöckner for his consistent help and expertise with

GPU computing, suggestions on drafts and many good conversations. Also thank

you to Prof. Timothy Warburton for the gracious use of computing resources.

Thank you to Prof. Esteban Tabak and Tamar Arnon, for believing in me early.

Thank you also to Profs. Olof Widlund, David Bailey and Jonathan Borwein.

I’d like to thank my parents, sister, the rest of my family and my friends for

their ongoing support. And finally, Michelle, still working on Michellebulon.

iii



Contents

Acknowledgements iii

List of Figures vi

List of Tables vii

Introduction 1

1 MCMC and Applications 3

1.1 Random Walks, Markov Chains and Detailed Balance . . . . . . . . 4

1.2 Metropolis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Autocorrelation time and difficulties with Metropolis . . . . . . . . 8

1.4 Applications of MCMC . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 The Stretch Move Ensemble Sampler 12

2.1 The random variable Z . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Convergence of the stretch move . . . . . . . . . . . . . . . . . . . . 14

3 The Stretch Move on the GPU 21

3.1 A short description of GPUs and OpenCL . . . . . . . . . . . . . . 21

3.2 Stretch move kernel design . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 User interface design . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Related software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Histograms and compute performance . . . . . . . . . . . . . . . . . 32

4 Sampling a Restricted Distribution 40

iv



5 Exoplanet Fitting Using Inference 45

5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Inference Problems with Stochastic Dynamics 53

6.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

v



List of Figures

1 An anisotropic Gaussian distribution . . . . . . . . . . . . . . . . . 10

2 Correct histogram on basic debug problem. Note that the true PDF

and the histogram are indistinguishable. . . . . . . . . . . . . . . . 33

3 Complete failure to find correct distribution due to inadequate burn-in. 34

4 Convergence achieved on 100 dimensional Gaussian . . . . . . . . . 35

5 Scaling with changes in total work-items. Note that the number of

walkers is twice the total number of work-items. . . . . . . . . . . . 36

6 Performance scaling with changes in dimension . . . . . . . . . . . . 37

7 Decrease in acceptance rate with increase in dimension . . . . . . . 38

8 Increase in autocorrelation time with dimension . . . . . . . . . . . 39

9 Histograms of three components of a Gaussian with restriction . . . 41

10 Comparison of histogram of Gaussian with restriction and PDF of

unrestricted Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . 42

11 Compute performance on restricted Gaussian . . . . . . . . . . . . 43

12 Scaling of autocorrelation time on restricted Gaussian . . . . . . . . 44

13 Posterior histograms on a one one planet fit, planet parameters . . . 49

14 Posterior histograms on a one one planet fit, reference velocity and

jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

15 Posterior histograms on a one dimensional SDE . . . . . . . . . . . 60

16 Details of posterior histograms on a one dimensional SDE . . . . . . 61

17 Less accurate parameter estimates due to changes in initial conditions 64

18 Estimating coefficients for a = 0, or Brownian motion . . . . . . . . 67

19 Scaling of autocorrelation time and posterior variance with changes

in dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

vi



List of Tables

1 Parameters and confidence intervals for planet fitting problem . . . 48

2 Sample rates for different strategies on Newton’s method. Eccen-

tricity e = 0.95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Default boundaries for the uniform prior . . . . . . . . . . . . . . . 54

4 Estimates of parameters and confidence intervals for SDE. Initial

conditions far from steady state makes for accurate estimates. . . . 58

5 Estimates of parameters and confidence intervals for SDE inference.

Initial conditions near steady state for larger standard deviations. . 63

6 Estimates of parameters and confidence intervals with no drift term 66

vii



Introduction

In this thesis, I investigate computational questions in Markov chain Monte Carlo

(MCMC). I am investigating one new MCMC method called the stretch move

ensemble sampler [3]. I have looked at the performance of this algorithm, in terms

of acceptance rates, autocorrelation time and compute performance. The thesis

describes a parallel implementation of the algorithm for graphics processing units

(GPUs). I investigate applications of the sampling, including Bayesian inference

problems.

I use an MCMC method called the stretch move ensemble sampler [3]. The

algorithm is affine invariant, so performs well on skewed distributions with little

tuning. It generally has low autocorrelation time. It is computationally efficient

and parallelizes completely with relatively minor communication.

One major component of the project is a parallel implementation of the stretch

move for GPU hardware. It is written in an extension to C called OpenCL. This

code shows that a highly parallel implementation of this algorithm is effective.

I investigate performance optimizations and memory management strategies. I

discuss how the compute performance scales with additional parallelism and show

speedup on real applications.

I have taken care to make the code easy to use, with a simple, clear code inter-

face. The user only needs to specify a probability density function (PDF). He/she

does this by providing a C program that evaluates the PDF. The user does not

need to write any OpenCL or understand GPU programming. Many applications

users do not know about parallel computing — they just want their sampler to

run fast. This code allows them to take advantage of modern computing hardware

with minimal time invested in learning computing technology only tangentially

1



related to their science objective.

The second major component is applications. First, I apply the sampler to

densities with inequality constraints that all components are nonnegative on the

domain. The main example is a Gaussian with restricted domain, or a “hard wall”

which . This is a toy model for entropic repulsion, which “refers to the event that

the random field moves away from the hard wall in order to gain space for local

fluctuations [1].” This paper contains more details on the statistical mechanics

behind this behavior. In my experiment, the particles at each edge are attached

to the boundary. The entropic repulsion causes particles in the center to be more

likely to be farther from the boundary. Also, many inference problems involved

distributions with restrictions. For example, a prior may restrict parameters to a

specified range. This can have similar effects in the posterior distributions as in

the physically motivated case.

I next look at a problem of exoplanet fitting. Consider a star other than the sun.

Planets orbiting the star, or exoplanets, cannot be seen directly, but their presence

can be inferred from their influence on the star. From the classical work of Kepler

and Newton, the dynamics of planets are well understood. From five parameters,

one can calculate the planet’s influence on the velocity of the star. The radial

velocity of the star, that is the velocity relative to Earth, can be measured using

spectroscopy. From measurements of the radial velocity, one can estimate the orbit

parameters for the star’s planets. This technique is one of two major successful

methods for finding planets outside our solar system. More details are in section

5 and [5]. I discuss the benefits of GPU parallelism on this problem.

The final class of problem I investigate is parameter estimation for stochastic

differential equations (SDEs). That is, I consider situations where the dynamics

2



themselves have noise. Additionally, the dimension may be large and contain many

unwanted, or nuisance, parameters. Nuisance parameters are, alas, necessary. To

estimate the parameters of interest, one must also estimate the nuisance parame-

ters. Suppose one is interested in coefficients governing an SDE. One may need to

sample a distribution that involves an entire path of a solution. For these reasons,

this is a challenging situation for inference.

1 MCMC and Applications

Suppose one has a continuous, multivariate random variable X with probability

density function (PDF) proportional to a function f , where

f : Rn → [0,∞)

and ∫
Rn

f(x) dx <∞.

The integral of f need not be known, but must be finite. Additionally, it is

known how to evaluate f , perhaps in closed form or perhaps only through some

complicated numerical algorithm. For the duration of this thesis, I only consider

dimensions N greater than or equal to two. The central question is this: Given f ,

how can I produce samples that behave approximately according to the distribution

of X? What algorithm can be used to produce these samples?

The algorithms I investigate are called Markov chain Monte Carlo, or MCMC,

methods. Here I summarize some relevant definitions and concepts. I discuss

Metropolis, the oldest and most used MCMC sampler, autocorrelation time and

3



the main applications of MCMC.

1.1 Random Walks, Markov Chains and Detailed Balance

(These descriptions are loosely based on [6].)

An MCMC method generates samples by moving in a random walk, that is

some sequence X1 . . . Xt. The subsequent samples are determined according to

stochastic dynamics, which depends on the individual algorithm.

A sequence of samples X1 . . . Xk has the Markov property if

P (Xt+1 = x|Xt . . . X1) = P (Xt+1 = x|Xt).

The conditional distribution of Xt+1 given all past elements is independent of all

but the previous state. A random walk with the Markov property is called a

Markov chain.

A Markov chain is irreducible if any state in the chain can reach any other in a

finite number of steps. Informally, there are no “islands” of probability such that

the chain cannot get to the other area. A state in a Markov chain has integer

period i if it is only possible to return to the state in multiples of i steps. A

Markov chain is called aperiodic if all states have period one. A state is recurrent

if, starting from the state, the probability of returning to a state eventually is one.

A state is positive recurrent if the expectation of the time to return is finite, and

a Markov chain is positive recurrent if all states have this property. An aperiodic,

positive recurrent Markov chain is called ergodic. See [6].

Another important property for proving convergence is called detailed balance.

Suppose the random walk is determined by stochastic dynamics K(Y |X), where

4



K is a conditional PDF of Y given the current state X. The detailed balance

condition is specified

K(X|Y )f(Y ) = K(Y |X)f(X).

For a continuous distribution, the quantities involved are not probabilities, but

probability densities at a point.

To prove convergence, the following facts and theorems are used. The Perron-

Frobenius theorem says that there exists a unique invariant distribution for the

Markov chain. If an ergodic MCMC preserves the invariant distribution, then

the iteration converges to the unique invariant distribution [6]. If the initial dis-

tribution creates an ergodic chain, this always occurs. To prove the invariant

distribution is preserved, detailed balance is usually used. Other proofs are valid,

but detailed balance is usually the most direct.

Convergence of an MCMC method is asymptotic. This means that the prob-

ability distribution of Xt converges to f as t → ∞, but Xt never has the exact

distribution for finite t. Thus, it is necessary to run a burn-in. The first few itera-

tions are thrown out since the distribution has not yet converged to the invariant

distribution. For some distributions, this may need to be tens of thousands or

more. There is no general theory for length of burn-in required.

1.2 Metropolis

The original, standard MCMC algorithm is called the Metropolis algorithm [7]. A

single step of the algorithm is shown in algorithm 1.

5



Algorithm 1 Metropolis Step

1: Let Xt be the sample at time t.
2: Propose a move Y by sampling from a proposal distribution T (Y |Xt).
3: Evaluate a likelihood ratio for the move

q(Y |Xt) =
T (Xt|Y )f(Y )

T (Y |Xt)f(Xt)
,

or if T is symmetric it cancels

q(Y |Xt) =
f(Y )

f(Xt)
.

4: If q(Y |Xt) > 1, accept. Otherwise, accept with probability q.
5: If accept Xt+1 = Y , else Xt+1 = Xt.

Informally, the algorithm works by taking an arbitrary move near the current

point. If the PDF has greater value at that point, then the walk always moves

there. If the PDF has a smaller value, then the move is accepted with probability

dependent on how much less likely.

The algorithm generates a sequence that is ergodic, so long as the proposal

distribution is designed correctly. The proposal distribution T must be made such

that the chain is irreducible. If the support of the PDF is connected, (considering

only continuous sampling problems) nearly any T which moves locally from the

current state satisfies this. But if the PDF is supported only on two or more

disjoint sets, T must be designed accordingly. The algorithm includes a rejection

step, and thus the dynamics it specifies are aperiodic because the distribution can

return to the current state through a rejection. Then with a properly designed

T the sequence generated is ergodic. Two common choices for T are uniform or

isotropic Gaussian in a neighborhood of the current state.

The dynamics of the algorithm satisfy detailed balance. Let X and Y be

arbitrary states. The density to transition from X to Y is given a(Y |X) T (Y |X).

6



The detailed balance condition for this algorithm is

a(Y |X) T (Y |X) f(X) = a(X|Y ) T (X|Y ) f(Y ).

The left hand side is the density to transition from X to Y multiplied by the

density of starting at X. The right hand side is the reverse. Suppose first that

q(X|Y ) > 1. Then q(Y |X) < 1 and a(Y |X) = q(Y |X). Then

a(Y |X) T (Y |X) f(X) =
T (X|Y )f(Y )

T (Y |X)f(X)
T (Y |X) f(X)

= T (X|Y )f(Y )

= a(X|Y ) T (X|Y ) f(Y ),

and similarly for the q(X|Y ) < 1 case. Thus, detailed balance is satisfied.

The dynamics preserve the invariant distribution. Suppose that Xt ∼ f , the

invariant distribution. There are two ways to arrive at a new state Y . One is

starting at another state X and moving to Y . This has density

a(Y |X)T (Y |X)f(X).

The second is to start at Y , then stay there through a rejection. This has proba-

bility ∫
(1− a(X|Y ))T (X|Y )f(Y ) dX.

To find the PDF of the new state Y , we must integrate the density to move to Y

7



for all X and add the probability of staying at Y through rejection. The PDF is

φ(Y ) =

∫
a(Y |X)T (Y |X)f(X) dX +

∫
(1− a(X|Y ))T (X|Y )f(Y ) dX

=

∫ [
a(Y |X)T (Y |X)f(X)− a(X|Y ))T (X|Y )f(Y )

]
dX

+ f(Y )

∫
T (X|Y ) dX

By detailed balance the first integrand is zero. The expression reduces to

= f(Y )

∫
T (X|Y ) dX

Since the transition density T is a PDF, it integrates to one.

= f(Y ).

So the iteration preserves the invariant distribution.

Since the iteration is ergodic and preserves the invariant distribution, the

Mertropolis algorithm converges.

One advantage Metropolis is that it does not require knowledge of normalization

constants. Because of the form of the ratio q, the normalization constant for the

PDF f cancels.

1.3 Autocorrelation time and difficulties with Metropolis

MCMC methods, however, have limitations. Ideally, the samples generated would

be independent, but since they are generated in a chain, they are correlated. This

can be measured by the autocorrelation time or sometimes integrated autocorrela-

8



tion time, denoted τ , of the sequence [3]. This is defined as

τ =
∞∑

t=−∞

C(t)

C(0)

where C(t) is the lag t autocovariance. This is defined as

C(t) = lim
s→∞

Cov(V (Xt+s), V (Xs))

where V (Xt) is an observable. The quantity C(0) is the steady state variance of

the observable. The number of effective independent samples is given by M/τ ,

where M is the total number of MCMC steps. Metropolis tends to have high τ

unless the transition density T is designed carefully. This is a major disadvantage.

Another disadvantage is that the algorithm is inherently serial. If evaluating

the PDF is time consuming, it may be possible to parallelize inside that routine,

but that is about the limit.

The third major disadvantage is that the algorithm may work poorly for skewed,

or anisotropic, distributions, depending on the proposal distribution. Consider a

two dimensional Gaussian with PDF given

f(~x) ∝ exp

(
−(x1 − x2)

2

2ε
− (x1 + x2)

2

2

)
,

taken from [3] and displayed in figure 1. This would be easily sampled by direct

methods and is only two dimensional. However, Metropolis has difficulty if the

standard uniform or isotropic Gaussian proposal distribution is used. To see this,

note that if moving in the (1,1) direction the steps would need to be of order one

to sample the distribution in a reasonable number of moves. Steps in the (-1,1)

9



direction would need to be much smaller, because a large step moves to a region

with low probability and is likely to be rejected. To get good convergence and low

autocorrelation time, the proposal T needs to approximate these contours. The

contours may not be clear. Tuning is costly in human time. This problem is worse

in high dimensions, where the contours can be difficult to find or match with a T

that can be sampled directly.

Figure 1: An anisotropic Gaussian distribution

1.4 Applications of MCMC

These samplers have many applications. One is to compute the expected value of

something. Let X1 . . . XM be samples from the distribution. Then an estimator

10



for the expected value is given

E[φ(X)] ≈ 1

M

M∑
i=1

φ(Xi).

This is the same thing as computing a deterministic integral by phrasing it as an

expectation. ∫
φ(X)f(X) dX = E[φ(X)] ≈ 1

M

M∑
i=1

φ(Xi).

Another major application is Bayesian inference problems. Let θ be a param-

eter (possibly a vector) that characterizes the dynamics of some system. Suppose

we can observe data which depends on θ plus noise. Let D denote a set of ob-

servations of the system. We establish a prior distribution P (θ). This represents

previously known information, and may be as simple as uniform or log-uniform

over a range. Also, we establish a likelihood p(D|θ). Then want to estimate the

posterior distribution P (θ|D) using Bayes rule.

P (θ|D) =
p(θ)p(D|θ)
p(D)

Since the normalization constants cancel when doing MCMC simulations, the con-

stant P (D) is typically not known and not used. This is referred to as an evidence

integral or partition function.

There are additional applications to simulations in statistical physics.

11



2 The Stretch Move Ensemble Sampler

The MCMC algorithm I investigate is called the stretch move [3]. The algorithm

has a similar structure to Metropolis, and still uses a proposal and an accept/reject

step. In this algorithm, we use a group or ensemble of sequences. Each member of

the ensemble is called a walker. After burn-in, each walker is distributed according

to the invariant distribution. On each iteration the algorithm generates multiple

samples. Each walker is independent of the other walkers. The walker is correlated

with its own previous state and the previous states of other walkers. This is the

surprising thing about the stretch move ensemble.

To update one walker, another walker is randomly selected from the comple-

mentary ensemble. An auxiliary random variable Z is sampled, described below

in section 2.1. A move is then proposed alone a line between the current walker k

and the complementary walker j according to the distribution

Y = X(j) + Z(X(k)−X(j))

and then accepted or rejected.

The algorithm is efficient and can be parallelized. The computation required

to update a single walker is comparable to other MCMC methods. To accomplish

this, split the walkers into two groups Xred, Xblack. First, all the red walkers

simultaneously are moved taking the black walkers to be fixed. Once these moves

are completed, move all the black walkers with the red walkers fixed.

The algorithm is affine invariant, which means that for A, a linear transfor-

mation, and vector b, sampling a PDF g(x) = Af(x) + b is equivalent to sampling

f then applying A and b after. Heuristically, this means that the algorithm is

12



not sensitive to skewed distributions. Because of this, the algorithm generally has

better autocorrelation time as compared to other MCMC methods.

A single iteration to update one walker is described in algorithm 2. This iter-

ation can be run in parallel for a each group of walkers.

Algorithm 2 Stretch Move Step to update Xred(k, t)

1: Randomly select a walker from the complementary ensemble Xblack(j, t)
2: Sample z ∼ g(Z).
3: Compute a proposed move Y

Y = Xblack(j, t) + z(Xred(k, t)−Xblack(j, t))

4: Compute the likelihood ratio

q = zN−1 f(Y )

f(Xred(k, t))

5: If q > 1, accept. Otherwise, accept with probability q.
6: If accept Xred(k, t+ 1) = Y , else Xred(k, t+ 1) = Xred(k, t).

The factor of zN−1 in the likelihood ratio ensures the invariant distribution is

preserved. This is derived in section 2.2.

2.1 The random variable Z

The algorithm requires an auxiliary random variable Z PDF g(z), which must

satisfy g(1/z) = zg(z). This distribution is usually g(z) ∝ 1/
√
z on (1/a, a),

where a > 1. This is the only distribution used in this project and thesis.

To generate the samples of the random variable Z, I will use the standard

technique of inverting CDFs. To get the PDF of g(z), define α =
∫ a

1/a
z−1/2 dz =

13



2
(√

a− 1√
a

)
. Then

g(z) =


1

α
√
z

: z ∈ (1/a, a)

0 : else

The CDF is given

FZ(z) =


0 : z ≤ 1/a

2
α

(√
z − 1√

a

)
: 1/a ≤ z ≤ a

1 : a ≤ z

Let X ∼ U(0, 1), then use the standard relationship of the CDFs, FZ(z) =

FX(h−1(z)) to find the appropriate transformation. Expand each of the CDFs

by their definition to find h.

2

α

(√
z − 1√

a

)
= h−1(z)

so

h(x) =

(
a− 2 +

1

a

)
x2 + 2

(
1− 1

a

)
x+

1

a

Then to sample Z, sample X and return h(X).

2.2 Convergence of the stretch move

First, I will show that the proposal is symmetric. Consider a transition made by

multiplying the current state by the random variable Z. Consider the density of

making a transition from 1 to an arbitrary value β. The density of this transition

is given by g(β). Now consider the density moving from β to 1. To be pedantic,

14



consider this a new random variable V = βZ. Use the formula form [6] for the

PDF of a function of a random variable.

fV (v)

∣∣∣∣∂v∂z
∣∣∣∣ = g(z)

or

fV (v)β = g(z)

fV (v) =
1

β
g

(
v

β

)
.

The random variable V must take value 1 to make the correct transition, so the

density is

fV (1) =
1

β
g

(
1

β

)
.

Then the required relationship for equality in these transitions is

g(β) =
1

β
g

(
1

β

)

Now, consider the proposal from X to Y .

Y = U + z(X − U)

Consider this vector equation componentwise.

Y − U
X − U

= z

15



This is the density to propose (Y − U)/(X − U) starting at one. The proposal

from Y to X is given

X = U + z(Y − U)

or

1 = z
Y − U
X − U

which is the density to propose one starting at the ratio (Y −U)/(X−U). By the

symmetry with β shown above, these two densities are equal. Thus, the proposal

density is symmetric if g follows the functional relationship. Since the proposal is

symmetric, the transition density T does not appear in the likelihood ratio q.

To show the convergence of the stretch move iteration, let f be PDF from which

to draw samples. Suppose Xn ∼ f . That is, the current state follows the invariant

distribution. I will show that the transition by the stretch move preserves this

distribution. If

E [φ(Xn+1)] = E [φ(Xn)]

for a sufficiently general family of functions φ, then the distribution is preserved.

Write X for Xn for clarity. All expectations are with respect to f and Z.

Consider the linear integral operator

Lφ(X) = E [φ(Xn+1)|X] .

The operator L is called the generator for the Markov chain. Also, let U be a

sample from f , independent and constant throughout. Next, expand L by its

definition. There are two possible states for Xn+1. The first is a rejection, in

which case the new state is also X. The second is an acceptance. The expected

16



acceptance probability with respect to z, as a function of X and U , is given

Pa =

∫
z

min

(
1, zN−1f(U + z(X − U))

f(X)

)
g(z) dz.

The rejection probability is 1 − Pa. To evaluate L, expand the expectation for

rejection and acceptance.

Lφ(X) =

(1− Pa)φ(X) +

∫
z

min

(
1, zN−1f(U + z(X − U))

f(X)

)
g(z)φ(U + z(X − U)) dz

The first term is the expected probability of rejection, multiplied by φ at the value.

Since X does not depend on z in a rejection, φ(X) comes out of the integral. The

second is the expected acceptance. Since the new state is dependent on z, X

remains in the integral.

Consider the inner product with respect to the PDF f . With one argument of

the constant function 1 and the other φ, I claim that L is self adjoint. That is

〈L1, φ〉f = 〈1,Lφ〉f . (1)

Also, L1 = 1, since expected value of the constant one is always one. The left

hand side of (1) is

〈L1, φ〉f =

∫
RN

φ(X)f(X) dX = E[φ(X)].

17



Expanding L, the right hand side of (1) is

〈1,Lφ〉f =∫
RN

φ(X)f(X) dX (2)

−
∫

RN

∫
z

min

(
1, zN−1f(U + z(X − U))

f(X)

)
g(z)φ(X)f(X) dz dX (3)

+

∫
RN

∫
z

min

(
1, zN−1f(U + z(X − U))

f(X)

)
g(z)φ(U + z(X − U))f(X) dz dX

(4)

The integral (2) is equal to the left hand side. I claim that integral (4) is equal

to (3), so their difference is zero. To see this, change variables in the right hand

integral. Use the change of variables

Y = U + z(X − U), ζ = 1/z

which has inverse transformation

X = U + ζ(Y − U), z = 1/ζ.

This gives the Jacobian as

∂(X, z)

∂(Y, ζ)
=



ζ Y1

ζ Y2

. . .
...

ζ YN

−1/ζ2



18



where unspecified entries are zero. This upper left block is N ×N , so the modulus

of the Jacobian determinant is given

∣∣∣∣∂(X, z)

∂(Y, ζ)

∣∣∣∣ = ζN
1

ζ2
= ζN−2.

Apply the change of variables to the integral. The bounds on Y remain as RN .

The bounds on ζ remain (1/a, a), by the symmetry of the range of z specified.

∫
RN

∫
z

min

(
1, zN−1f(U + z(X − U))

f(X)

)
g(z)φ(U + z(X − U))f(X) dz dX

=

∫
RN

∫
ζ

min

(
1,

1

ζN−1

f(Y )

f (U + ζ(Y − U))

)
ζN−2g

(
1

ζ

)
φ(Y )f (U + ζ(Y − U)) dζ dY

Apply the functional relationship g(z) = 1
z
g(1

z
) to remove a 1/ζ.

=

∫
RN

∫
ζ

min

(
1,

1

ζN−1

f(Y )

f (U + ζ(Y − U))

)
ζN−1g (ζ)φ(Y )f (U + ζ(Y − U)) dζ dY

Rename the variables back to X, z for clarity.

=

∫
RN

∫
z

min

(
1,

1

zN−1

f(X)

f (U + z(X − U))

)
zN−1g(z)φ(X)f (U + z(X − U)) dz dX

The integrand is pointwise equal to that of integral (3). To see this, note that

the acceptance ratios q are reciprocals. If
1

zN−1

f(X)

f (U + z(X − U))
≤ 1, then the

19



acceptance probability in the other integrand is

min

(
1, zN−1f(U + z(X − U))

f(X)

)
= 1.

Comparing integrands

min

(
1,

1

zN−1

f(X)

f (U + z(X − U))

)
zN−1g(z)φ(X)f (U + z(X − U))

=
1

zN−1

f(X)

f (U + z(X − U))
zN−1g(z)φ(X)f (U + z(X − U))

= f(X)g(z)φ(X),

which is the integrand of 3 so the equality holds.

If
1

zN−1

f(X)

f (U + z(X − U))
≥ 1, then

min

(
1, zN−1f(U + z(X − U))

f(X)

)
= zN−1f(U + z(X − U))

f(X)
.

Comparing integrands

min

(
1,

1

zN−1

f(X)

f (U + z(X − U))

)
zN−1g(z)φ(X)f (U + z(X − U))

= zN−1g(z)φ(X)f (U + z(X − U))

= zN−1f(U + z(X − U))

f(X)
g(z)φ(X)f(X)

= min

(
1, zN−1f(U + z(X − U))

f(X)

)
g(z)φ(X)f(X)

so the equality holds here as well. Thus integral (3) and integral (4) are equal.

Then the self adjoint property holds. Note according to the formalism derived in

[4], detailed balance is equivalent to equality of these integrands.

20



Also, in terms of expectations, the right side is

〈1,Lφ〉f =

∫
RN

E [φ(Xn+1)|X] f(X)dX

= E[E [φ(Xn+1)|X]]

= E [φ(Xn+1)|X]

Then

E [φ(Xn+1)|X] = E[φ(X)]

for arbitrary φ so the iteration preserves the invariant distribution. Thus, the

stretch move iteration converges to this distribution.

3 The Stretch Move on the GPU

A major component of the project is an implementation of the stretch move for

GPU parallel hardware. I discuss relevant issues and definitions for OpenCL, the

implementation, performance and user interface. I show some results on perfor-

mance, autocorrelation time and acceptance rates.

3.1 A short description of GPUs and OpenCL

This package is written in C and OpenCL. OpenCL defines a library interface and

programming language based on C99 that allow the user to access the GPU for

general computations. The program execution in controlled by a standard CPU

program. The CPU is also referred to as the host, and the GPU as the device. An

OpenCL program that runs on the device is called a kernel. The device may not

be a GPU, as OpenCL also runs on other types of hardware, but I will focus on

21



the GPU here.

A GPU has a lot of parallelism on a small, relatively inexpensive chip. A

2013 era GPU has thousands of physical cores and a full memory system, distinct

from that of the CPU. The GPU has a single, large piece of RAM called that is

accessible by all threads. This memory is physically separate from the compute

units (described below) and is referred to as “off-chip memory.” The host can read

or write data from off-chip memory directly.

The physical cores are organized into groups called a compute units, which

includes a single set of hardware for instruction fetch and decoding. The individual

physical core is referred to as a processing element or SIMD lane, which includes

a separate arithmetic logic unit (ALU), but no cannot do instruction decoding.

The execution of instructions on a compute unit is SIMD, or “single instruction,

multiple data.” The single instruction fetched by the compute unit is run on all

processing elements simultaneously, in parallel.

Each compute unit has a small, fast piece of memory called on the same physical

chip as the compute units, and is referred to as “on-chip.” A compute unit shares

a physical piece of on-chip memory, which is shared between threads running on

the unit, but is inaccessible to threads on other compute units. There is a still

smaller, very fast piece of memory called registers, that is owned associated with a

single processing unit, which is also physically on-chip. This is the default memory

location for literals and statically defined arrays. If a kernel uses too much on-chip

memory, OpenCL will place the data in off-chip. This is called a spill, and usually

results in bad performance. The host cannot directly access on-chip memory; they

can only be accessed by an OpenCL kernel.

To run software on this hardware, OpenCL automatically manages the parallel

22



execution of threads on the GPU. An OpenCL thread is called a work-item. The

work-items run in a group of threads called a work-group. Each work-group is

executed on a compute unit in SIMD. This means that a work-group size that is

a multiple of the SIMD width usually gives best performance. Instructions that

would not be executed in a serial program (for example, an else clause in an if

statement that evaluates to true) are still executed, but their values are thrown

away. This means that branches and loops which run for a variable number of

iterations make performance slow. The OpenCL can also perform latency hiding,

which means that it can execute instructions while waiting for memory reads and

writes to complete.

To manage memory, the programmer specifies where they intend the data to be

stored. If they specify global memory, the data is stored off-chip (assuming it fits).

Attempts to allocate more global memory than the size of the off-chip memory

will usually result in runtime errors. If the programmer specifies local memory,

OpenCL will attempt to place the data in on-chip memory. Local memory must

be managed manually by the programmer — all allocations and accesses must be

explicitly declared. If they specify private memory (or nothing, this is default),

then OpenCL will attempt to place the data in registers. For data in local and

private memory, there is always a risk that the on-chip memory will become full,

and spills will occur. In the even of the spill, all variables behave semantically

in the same way — a private variable still cannot be accessed by any other work

items. However, this can be a major source of performance loss. OpenCL includes

barriers to synchronize within global and local memory within a kernel. However,

to synchronize memory traffic between compute units requires that the kernel is

stopped.

23



3.2 Stretch move kernel design

The stretch move kernel updates a group of walkers in parallel. The code is parallel

across the entire walker update. Each time the kernel is called, proposals are made

in parallel to update each walker. The likelihood function is evaluated, the ratio

q is computed and walker positions are updated. Before updating the next group,

the kernel must stop to ensure that memory traffic from updates is complete.

One alternate strategy is to compute the proposals in serial on the CPU and

send the likelihood evaluations to the GPU to be evaluated in parallel, then send

the likelihood back then perform the accept/reject step. This is a worse strategy,

because it involves sending high latency messages to the GPU. Computing pro-

posals and accept/reject may be cheap relative to the likelihood, but there is no

reason not to compute it on the GPU.

The strategy for memory use is straightforward. The walkers are kept as a

“master copy” in global at all times. Each work-item owns a single walker in each

work-group, and updates only that walker. A race condition occurs when there

is ambiguity in the order of two or more operations, and the result depends on

the order. Usually, this occurs when one thread attempts to read a location in

memory at nearly the same time another writes to the same location. Then it is

not defined wether thread reads the new or the old value. A race condition leads

to undefined behavior or worse. This clear ownership eliminates race conditions

in updating the walkers. On each iteration, the walker is read once to compute a

proposal. Thus, the best strategy is to keep the walkers in global, as reading to

local on each kernel call doesn’t save any memory traffic.

The proposal can be kept in private or local memory. Private memory is faster,

but risks “spilling” to global for problems of even moderate dimension. Local is

24



slower than if the array stays in private, but is much faster if it spills to global.

For many problems, such as the planet fitting described in section 5, storing and

reading the proposal is not a dominant cost. This choice then makes little differ-

ence.

If there is constant data in the problem, it is usually beneficial to place it in

local memory. Suppose there are Nobs total pieces of data and the workgroup

size is W . Since the data is constant, and local memory is shared within a work

group. Then each work-item needs to read Nobs/W total pieces of data from global

memory. If W is a standard work-group size such as 64 or 128, this saves a lot of

global memory traffic. If the data is of too large to fit in local memory, then this

speedup is not available. It may be possible to use more sophisticated strategies,

but this is dependent on the particular distribution that is being sampled.

Communication and computation are overlapped. When updating the a group

of walkers in parallel, the other walkers are remain unchanged. Thus the con-

stant walkers can be sent to the host while the current group is being updated.

To accomplish this, the implementation uses two OpenCL queues. This allows

manual control of the overlap and required synchronization. For expensive PDF’s,

the communication is completely hidden. This has shown up to a two fold total

speedup compared to no overlap. For very inexpensive PDF’s, the time to sample

is short compared to latency of a single message. The overlap improves compu-

tation, but since most of the time is waiting for memory traffic, the GPU cannot

be kept busy. This is not fantastic. However, if this happens the problem is fast

overall so this is usually not an issue.

25



3.3 User interface design

Great care has been taken to make the code easy to use. To get started, the user

only needs to follow a few simple steps:

1. Place generic C code to evaluate the log of the probability density function

to sample in “pdf.h.”

2. Pick one of the included examples in “stretch move main.c” to run. Check

that parameters in the example match your problem, which usually means

setting the correct dimension.

3. Type “make” on the command line to build the code with the included

makefile.

4. Type “./stretch move main” to run the executable. The code will prompt to

select an OpenCL implementation and hardware, then run the sampler.

More detail about each step follows.

3.3.1 Setup

In more detail, here are instructions for setup for sampling.

First, specify the PDF. For numerical reasons, the code requires the logarithm

of the PDF, rather than the PDF itself. The PDF does not need to be normalized.

To do this, place your code in the file “pdf.h.” The PDF function is written

standard C, with a few restrictions. There is no access to I/O, so all data must be

passed to the function in memory rather than read from a file. There is also no

dynamic memory allocation, recursion or function pointers.

26



Suppose one wanted to sample an N dimensional Gaussian with PDF

f( ~X) ∝ exp

(
−1

2

N∑
i=0

(Xi+1 −Xi)
2

)
.

where by definition X0, XN+1 = 0. Then the log PDF function would be imple-

mented as

float log_pdf(PROPOSAL_TYPE *x,

__global const data_struct *data_st, DATA_ARRAY_TYPE *data){

float sum = x[0]*x[0] + x[NN-1]*x[NN-1];

for(int i=0; i<NN-1; i++){

sum += (x[i+1] - x[i]) * (x[i+1] - x[i]);

}

return -0.5f * sum;

}

The dimension “NN” is set up at kernel compile time by the initialization rou-

tine and is always available in this function. The data structure “data st” and

array “data” are passed even if they are not used. The types PROPOSAL TYPE and

DATA ARRAY TYPE are always float, but using this definition allows easy changes

from global to local, as described below. This is for generality, since the package

handles all the data movement.

Next, define needed constants in “constants.h.” These may define the dimen-

sion of the problem or observations, values for the prior, loop bounds, or anything

else.

Also, if the PDF requires additional data, add the types to “data struct.h.”

Because of OpenCL scoping rules, you must also specify this structure again in

“pdf.h” for the kernel to use. By default this contains a float, you may add any

27



scalars or small statically defined arrays.

If you wish to include arrays, use the buffer “data.” This is a single float

array, and all the arrays must be packed into this array. OpenCL is not flexible

to complicated structures involving variable numbers of pointers or pointers to

pointers. The best general structure is to insist that the user gets one data array,

and should unpack it manually.

As mentioned above, data is placed into local memory. If you have too much

data to fit in local, remove the definition

#define USE_LOCAL_DATA

from “pdf.h.” This will automatically place the data in global memory in all

necessary places. This simple switch shields the user from updating OpenCL code

for local memory management.

Consider sampling a multivariate normal with mean ~µ and covariance matrix

Σ. The PDF is given

f( ~X) ∝ exp

[
−1

2
( ~X − ~µ)Σ−1( ~X − ~µ)

]
.

We want to pass a vector “mu” of length NN for the mean, and an NN by NN matrix

for the inverse covariance “inv cov.” Set these to be contiguous in memory in the

array “data” which is passed to the initialization routine. For example, allocate

“data” to be a length NN + NN2 float array. Suppose one wanted µ = (0, 1 . . .NN-

1) and Σ−1 to be a (-1,2,-1) tridiagonal matrix. Initialize the data as follows:

for(int i=0; i < dimension; i++)

data[i] = (cl_float) i;

for(int i=dimension; i < data_length; i++)

data[i] = 0.0f;

for(int i=0; i < (dimension-1); i++){

28



data[ i + i*dimension + dimension ] = 2.0f;

data[ i+1 + i*dimension + dimension ] = -1.0f;

data[ i + (i+1)*dimension + dimension ] = -1.0f;

}

data[ (dimension-1) + (dimension-1)*dimension + dimension ] = 2.0f;

The package handles moving the packed array to the device.

In your code for the PDF, set pointers or otherwise read the data. For example:

// The first elements of the data array are the means

DATA_ARRAY_TYPE *mu = data;

// NN elements later is the inverse covariance matrix

DATA_ARRAY_TYPE *inv_cov = data + NN;

Now these pointers can be used as normal arrays to evaluate the PDF. If you

unpack data this way, it must have the same scope and address space as the data

array. Use pointers (rather than reallocate and copy) to avoid wasting time on

memory operations. This is illustrated in full in the second code example.

3.3.2 Sampling

The package maintains a set of data structures. The user creates a sampler object

by calling an initialization routine. This structure contains parameters about the

run, and allocates arrays on host and initializes the walkers. It starts an OpenCL

context and two queues, then allocates device buffers and transfers the device as

appropriate. It also compiles and initializes the random number generator and

finally compiles the stretch move OpenCL kernel.

An example of calling the initialization is as follows. Set up some parameters

for your run, start with the chain length. This is the number of ensemble samples

that will be run when you start the sampler.

29



cl_int chain_length = 100000;

Next is the dimension of the problem:

cl_int dimension = 10;

Set the size of each half of the ensemble, which also corresponds to the total

parallelism available, and the work group size, which must divide the number of

walkers per group.

cl_int walkers_per_group = 2048;

size_t work_group_size = 128;

Set the value of a, the parameter for Z as described in section 2.1. Also set the

PDF number, which allows the user to switch the PDF without large modifications

to the source.

double a = 1.5;

cl_int pdf_number = 1;

Tell the sampler which variables are important, and which are nuisance variables

that can be thrown out.

cl_int num_to_save = 2;

cl_int *indices_to_save = (cl_int *) malloc(num_to_save * sizeof(cl_int));

indices_to_save[0] = 0;

indices_to_save[1] = 3;

Call the initialization routine to allocate all the necessary arrays and compile

the OpenCL kernels.

sampler *samp = initialize_sampler(chain_length, dimension,

walkers_per_group, work_group_size,

a, pdf_number,

data_length, data,

num_to_save, indices_to_save,

CHOOSE_INTERACTIVELY, CHOOSE_INTERACTIVELY);

30



Use these default values for the last two parameters, which allows the user to select

the device interactively. Despite the modestly messy data structure, and setup of

OpenCL objects, the user only needs to call this one routine to get everything set.

Now, the user can run the burn-in:

int burn_length = 5000;

run_burn_in(samp, burn_length);

The sampler is now ready. Run it:

run_sampler(samp);

The array samp->samples host is now filled with samples ready for use. Samples

are stored in “component major” order, so to access component i of sample j, use

samp->samples_host[i + j*samp->N];

This set of parameters and functions is all the user should need to sample most

distributions. Crucially, none of this involves coding in OpenCL. By following this

simple set of instructions, any user can take advantage of GPU parallelism.

There are also basic utilities included for computing mean, variance, autocor-

relation time and histograms.

3.4 Related software

One related package is called emcee: the MCMC hammer [2]. This package im-

plements the Stretch Move in Python and has been successfully used in inference

problems. The algorithm is sufficiently new that there are not many libraries that

use it, so if a significant speedup would have real impact. The code here has

performed significantly faster than emcee on some test problems.

The random number generator used is ranluxcl [8]. The kernel requires precisely

three random numbers per update of a single walker. The generator takes an

31



integer from 0 . . . 4 as a “luxury” level, which allows the user to request higher

quality random numbers with a possible increase in performance cost. The default

is the maximum value of 4.

3.5 Histograms and compute performance

In this section, I measure and discuss compute performance. All tests in this

section were run on an Nvidia GeForce GTX 590 [9]. The GPU has an instruction

clock speed of 1.2 GHz. It has 1024 total compute-units with a SIMD width of 32.

For the sake of comparison, I use the Gaussian with PDF

f( ~X) ∝ exp

(
−1

2

N∑
i=0

(Xi+1 −Xi)
2

)

with X0, XN+1 = 0 by definition, throughout.

Figure 2 shows a correct histogram on this problem.

32



−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

Histogram of X
5
 of 10 dimensional Gaussian

Walkers = 4096, Burn−in = 10000, Steps = 10000

x

E
s
ti
m

a
te

 o
f 
f

 

 

True PDF

Histogram of samples

Figure 2: Correct histogram on basic debug problem. Note that the true PDF and
the histogram are indistinguishable.

Figure 3 illustrates a common problem. This is Gaussian debug problem, which

can be easily sampled by direct methods. The stretch move fails entirely due to

inadequate burn-in. The histogram still has a Gaussian-like shape, but this is

likely because of the central limit theorem or a partially converged sampler.

33



−25 −20 −15 −10 −5 0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Histogram of X
50

 of 100 dimensional Gaussian

Walkers = 4096, Burn−in = 1000, Steps = 10000

x

E
s
ti
m

a
te

 o
f 
f

 

 

True PDF

Histogram of samples

Figure 3: Complete failure to find correct distribution due to inadequate burn-in.

Figure 4 shows convergence on the same problem. More burn-in gives a correct

result, even though the other parameters are the same. The number of walkers

used or the total samples collected are not changed. Note that the fit is not as

clean as the ten dimensional case, despite the additional burn-in.

34



−30 −20 −10 0 10 20 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Histogram of X
50

 of 100 dimensional Gaussian

Walkers = 4096, Burn−in = 200000, Steps = 10000

x

E
s
ti
m

a
te

 o
f 
f

 

 

True PDF

Histogram of samples

Figure 4: Convergence achieved on 100 dimensional Gaussian

Figure 5 shows the scaling with total number of work-items, which is equal

to the total parallelism in the problem. The hardware is not changing, this is

run on a single GPU. The figure shows a rapid increase in performance from few

work-items to many more. This corresponds to filling the cores of the GPU. For

larger numbers of total work-items, the performance continues to increase, but

more slowly. This is likely due to further benefits of latency hiding with more

work pushed to the GPU. At the highest position, the performance has stabilized

using the full parallelism available for this hardware and problem.

The performance curve is not smooth. Performance is better for multiples of

1024, and drops for work-item sizes of the form 1024n + 128. This is because the

hardware has 1024 total physical compute units. Using 1024n + 128 work-items

means that some SIMD units have more work groups to process than others. In

35



other words, multiples of 1024 have better load balancing. Latency hiding reduces

some of this loss. This is why performance is reduced by about .8 and not a factor

of two.

0 1000 2000 3000 4000 5000 6000 7000
0

2

4

6

8

10

12

14

16

18

20

Performance on 50 dimensional Gaussian
Work group = 64, Burn−in = 10000, Steps = 10000

M
 s

a
m

p
le

s
 /
 s

e
c
o
n
d

Total work items

 

 

Sampler rate

Total rate including burn

Figure 5: Scaling with changes in total work-items. Note that the number of
walkers is twice the total number of work-items.

Figure 6 shows performance scaling with dimension. Note that twice as many

burn-in steps are run as sampling steps. Performance diminishes with increased

work roughly as expected. The drop is very high at first, because the in the five

dimensional case the PDF is very fast to evaluate and most time is spent in launch

overhead. As the dimension increases, the cost of evaluating the PDF increases

and performing the computation becomes more relevant.

This plot shows a decrease in performance for odd dimensions. This is likely

due to memory access patterns and cache alignment. For future work, it would be

beneficial to explore memory padding strategies.

36



0 50 100 150
0

5

10

15

20

25

30

35

40

45

50

Performance on Gaussian of variable dimension
Walkers = 4096, Work group = 64, Burn−in = 10000, Steps = 10000

M
 s

a
m

p
le

s
 /
 s

e
c
o
n
d

Dimension

 

 

Sampler rate

Total rate including burn

Figure 6: Performance scaling with changes in dimension

Figure 7 shows decrease in acceptance rate with increase in dimension. Also,

since the burn-in required for very large dimensions is high, I use a long burn

throughout this test, even though it is unnecessary for smaller problems. The

length parameter a is two for this test.

37



0 50 100 150
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Scaling of acceptance rate on Gaussian of variable dimension
Walkers = 4096, Work group = 64, Burn−in = 200000, Steps = 10000

A
c
c
e
p
ta

n
c
e

 r
a
te

Dimension

 

 

Acceptance rate

Figure 7: Decrease in acceptance rate with increase in dimension

Figure 8 shows the scaling of the τ with the dimension. The parameter a is

selected as min(2, 1 + 30/N). To pick this ratio, I tuned a to have an acceptance

rate of approximately .35 for a 100 dimensional problem. I also wanted a to be of

the form 1 + c/N , so solved for c according to the 100 dimensional problem. The

maximum a is capped at the standard value of 2. This resulted in an improvement

of τ for high dimensions by a factor of approximately 2 compared to the standard

a = 2.

38



0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

Scaling of ensemble autocorrelation time on Gaussian of variable dimension
Middle component of each variable used

Walkers = 4096, Work group = 64, Burn−in = 100000, Steps = 1000000

A
u
to

c
o
rr

e
la

ti
o
n
 T

im
e

Dimension

 

 

Autocorrelation time

Figure 8: Increase in autocorrelation time with dimension

39



4 Sampling a Restricted Distribution

In this section, I investigate sampling a distribution with restrictions. The distri-

bution of interest is

f( ~X) ∝ exp

(
N∑
i=0

(Xi+1 −Xi)
2

)
r( ~X)

where r( ~X) = 1 if all components of X are nonnegative and zero otherwise.

This is an interesting problem as a toy model for entropic repulsion, the physics

of which are explored in more complex setting in [1]. Also, many prior distributions

for inference problems have restrictions. This simple distribution exposes math-

ematical behavior which occur in posterior sampling. The restriction moves the

mean of each component to one side, sometimes inducing skewness or bias. Also,

some samplers have difficulty with high autocorrelation time or sample rates on

these distributions. The performance is evidence that the stretch move is robust

for many distributions.

Figure 9 shows a histogram of components of this distribution. The peak of

the first component is near the origin. The peaks of subsequent components have

peaks increasingly far from zero, with the center component being the furthest

away.

40



−5 0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Component histograms of 50 dimensional Gaussian with restriction
Walkers = 4096, Burn−in = 200000, Steps = 10000

x

E
s
ti
m

a
te

 o
f 
f

 

 
X

1

X
5

X
11

X
25

Figure 9: Histograms of three components of a Gaussian with restriction

Also interesting is the difference between the unrestricted PDF and the his-

togram from restriction. The middle component, X25 of the same 50 dimensional

problem is shown in figure 10.

41



−25 −20 −15 −10 −5 0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Comparison of histograms of 50 dimensional restricted Gaussian with unrestricted PDF
Walkers = 4096, Burn−in = 100000, Steps = 10000

x

E
s
ti
m

a
te

 o
f 
f

 

 
X

25
 of restricted

True unrestricted PDF

Figure 10: Comparison of histogram of Gaussian with restriction and PDF of
unrestricted Gaussian

Computational performance is unaffected by the restriction. This is evident

comparing figure 11, which shows that the performance on the restricted distribu-

tion, and figure 6, which shows the unrestricted.

42



0 50 100 150
0

5

10

15

20

25

30

35

40

45

50

Performance on restricted Gaussian of variable dimension
Walkers = 4096, Work group = 32, Burn−in = 10000, Steps = 10000

M
 s

a
m

p
le

s
 /
 s

e
c
o
n
d

Dimension

 

 

Sampler rate

Total rate including burn

Figure 11: Compute performance on restricted Gaussian

Another question is the variation in autocorrelation time. Figure 12 shows the

growth of τ with the dimension. As in figure 8, a is selected as min(2, 1 + 30/N).

The autocorrelation time is larger on the restricted distribution, but remains within

the same order of magnitude. This resulted in an improvement of τ for high

dimensions by a factor of approximately 4 compared to the standard a = 2. This

is a larger reduction than in the unrestricted case.

43



0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

Scaling of ensemble autocorrelation time on restricted Gaussian of variable dimension
Middle component of each variable used

Walkers = 4096, Work group = 64, Burn−in = 100000, Steps = 1000000

A
u
to

c
o
rr

e
la

ti
o
n
 T

im
e

Dimension

 

 

Autocorrelation time

Figure 12: Scaling of autocorrelation time on restricted Gaussian

44



5 Exoplanet Fitting Using Inference

Another application is exoplanet fitting. Astronomers have developed techniques

to measure the radial velocity of a star using spectroscopy. Observations of the

radial velocity are used as evidence of planets orbiting a star. The orbit param-

eters of the planet can then be inferred by Bayesian posterior sampling. I have

investigated the application of the GPU parallel sampler to this problem.

Here I summarize the problem as described in [5]. I assume that the planets

follow a Keplerian orbit. The interactions between the any pair of planets is neg-

ligible. The radial velocity depends on a set of parameters, and can be computed

by Kepler’s classical formulas. The first parameter is v0, the velocity offset, or

the approximate radial velocity of the entire system. Each planet contributes a

perturbation ∆v to the radial velocity of the star. Then the radial velocity is given

vrad(t) = v0 +
P∑
i=1

∆vi(t)

where P is the total number of planets orbiting the star. Five independent param-

eters for each planet determine the orbit and thus ∆v. They are A, the amplitude,

ω, the mean angular velocity, φ, the phase of pericenter passage or angle offset, e,

the eccentricity of the orbit and $, the longitude of periastron, the angle of the

ellipse with our view. The perturbation at time t is computed with the algorithm

3.

I wish to put a prior on the period, rather than the mean angular velocity.

Thus, I use p = 2π/ω in the code instead. There is one extra parameter, the

jitter s, which is overall system noise. Define θ to be a vector containing all these

parameters. That is θ = (A1, p1, φ1, e1, $1, . . . , AP , pP , φP , eP , $P , v0, s).

45



Algorithm 3 Compute ∆v(t)

1: Compute the mean anomaly M as

M = ωt+ φ.

2: Solve the implicit equation

M = E − e sinE

for the eccentric anomaly E.
3: Compute the true anomaly f according to

cos f =
cosE − e

1− e cosE
.

4: Compute the perturbation for this planet

∆v(t) = A [sin(f + ω) + e sin($)].

Now, I set up the necessary distributions for inference. The data in this prob-

lem involves Nobs measurements of the radial velocity. Denote the data D =

(t1, v1, σ1, . . . tNobs
, vNobs

, σNobs
) where ti is the observation time, vi is the radial ve-

locity and σi is the estimated standard deviation on this observation. The prior

is uniform or log-uniform (Jeffreys prior) on each component of θ, see [5]. The

likelihood is given by

P (D|θ) ∝
Nobs∏
i=1

(σ2
i + s2)−1/2 exp

[
−1

2

Nobs∑
i=1

(vi − vrad(ti))2

(σ2
i + s2)

]
.

The dependence on θ is implicit in the value vrad(t). The denormalized log of the

PDF is given

l(D|θ) = −1

2

[
Nobs∑
i=1

(vi − vrad(ti))2

(σ2
i + s2)

+ log(σ2
i + s2)

]
.

46



I sample from the distribution

P (θ|D) =
P (θ) P (D|θ)

P (D)

This is the standard setup for Bayesian inference problems. The partition function

or “evidence integral” P (D) is a constant for fixed observations. This cancels in

the acceptance ratio q and is ignored.

5.1 Results

The sampler correctly finds histograms on a one planet fit. Results on a simple

set of synthetically generated data are discussed here. The noise on the individual

observations, σi ∼ U [0, 1]. The total noise added to each observation is N (0, σ2
i +

s2). Posterior histograms are shown in figures 13 and 14.

The parameters for this run are as follows. The initial time is 0.00, final is

20.00 with a time step of 0.10. The total number of observations is 201. This

run was performed with a chain length of 100 thousand. Simulated annealing was

run with a cooling schedule of 1/20, . . . 1/2, 1. Each temperature of the cooling

schedule is run for 50 thousand steps. The burn-in is run for 1.0 million steps.

The number of walkers is 2048 and work-group size is 32. The sample rate is 0.44

M samples/second for kernel time and 0.02 M samples/second for total time. The

reason for this large disparity is that very long simulated-annealing and burn-in

were run. The tuning parameter a is 1.80. The acceptance rate is 0.541.

Table 1 shows some statistics about the parameters estimated.

47



true est max likelihood mean 65% CI 95% CI std dev autocorr time
a 15.000 14.847 14.833 ± 2.245e-06 ± 4.489e-06 0.000102 80.3
p 8.000 8.036 8.036 ± 4.537e-07 ± 9.075e-07 0.000021 286.0
φ 2.000 2.024 2.034 ± 3.553e-07 ± 7.107e-07 0.000016 125.2
e 0.500 0.494 0.494 ± 1.226e-07 ± 2.452e-07 0.000006 94.2
$ 3.000 3.037 3.043 ± 3.529e-07 ± 7.057e-07 0.000016 106.1
s 1.000 1.068 1.092 ± 1.099e-06 ± 2.197e-06 0.000050 105.5
v0 4.000 3.933 3.933 ± 1.595e-06 ± 3.189e-06 0.000072 137.4

Table 1: Parameters and confidence intervals for planet fitting problem

48



14.2 14.4 14.6 14.8 15 15.2 15.4 15.6 15.8
0

0.5

1

1.5

2

2.5
Detail of "A" histogram around max likelihood

f 
h
a
t

A

 

 

Histogram

True value

7.98 8 8.02 8.04 8.06 8.08 8.1
0

5

10

15

20

25

30
Detail of "p" histogram around max likelihood

f 
h
a
t

p

 

 

Histogram

True value

1.9 1.95 2 2.05 2.1 2.15
0

2

4

6

8

10

12

14

16

18

20

Detail of "φ" histogram around max likelihood

f 
h
a
t

φ

 

 

Histogram

True value

0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55
0

5

10

15

20

25

30

35

40

45

50
Detail of "e" histogram around max likelihood

f 
h
a
t

e

 

 

Histogram

True value

2.95 3 3.05 3.1
0

2

4

6

8

10

12

14

16

18
Detail of "pomega" histogram around max likelihood

f 
h
a
t

pomega

 

 

Histogram

True value

Figure 13: Posterior histograms on a one one planet fit, planet parameters

49



0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

1

2

3

4

5

6
Detail of "s" histogram around max likelihood

f 
h
a
t

s

 

 

Histogram

True value

3.7 3.75 3.8 3.85 3.9 3.95 4 4.05 4.1 4.15 4.2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Detail of "v
0
" histogram around max likelihood

f 
h
a
t

v
0

 

 

Histogram

True value

Figure 14: Posterior histograms on a one one planet fit, reference velocity and
jitter

The posterior distributions have multiple peaks, many of which are far from

the true values. A very long burn-in and simulated annealing run allows the

sampler to leave these other local maxima. The walkers then all end up in a

neighborhood of the true value. One cause is periodic variables. If the orbit has

period p, then it is also 2p periodic. I have observed local optima at twice the

true value. On variables that are angles, φ and $, multiple peaks occur if the

true value is close to the boundary. Values near the opposite boundary are far

on the linear histogram, but they are close in angle. This creates a strong local

maximum far from the true value. Walkers frequently get stuck in this region.

There are extraneous peaks which lack a clear explanation, beyond that local

optima happen. For example, sometimes there are extra peaks on s. Perhaps the

sampler has difficulty distinguishing noise on each component and jitter.

The biggest impact on performance was modifications to the Newton’s solve for

step 2 of algorithm 3. The right hand side is strictly monotonic, so the equation has

a unique solution. However, as e approaches one, the derivative approaches zero

50



at points, and it is possible for the Newton’s iteration to make a bad guess. This

sometimes causes very long iterations or iterations that fail to converge entirely.

The instructions are SIMD, so if one Newton’s solve is very slow then an entire

work-group must wait.

There are two strategies that I have tried to improve the iteration. One is

restarting the iteration. The true solution is bounded as M − e ≤ E ≤ M + e.

If a Newton’s iteration leads to a value outside the range, I restart the iteration

halfway between the current state and the boundary. Another strategy is to use a

Taylor series for sine to get a good initial guess. Suppose e is near one.

M = E − e sin(E) ≈ E − e(E − E3/6) = (1− e)E + eE3/6.

Since e is near one, the first term can be neglected. The initial guess is

E =

(
6M

e

)1/3

.

For e close to one, this is a good approximation to the solution.

These strategies have a dramatic influence on performance. Table 2 shows

timing on various Newton’s strategies with e = .95. There are 4096 walkers with a

work group size of 64. The maximum iterations is set to 1000 so that the algorithm

does not terminate early. First, I tested with M = E. This provides an estimate

of the cost of running the Newton’s method. For e = .95 near one as shown in

the, this experiment reveals the Newton’s solve takes over 80% of the total time.

This is improved slightly on the restart. With both restart and Taylor series, the

Newton’s method takes around 56% of the total time. This is a over a two fold

speedup on the entire sample rate, not just Newton’s, from basic Newton’s method.

51



Strategy Sample rate (M samp / s)
E = M (no Newton’s) 1.7181

Basic 0.2744
With restart 0.3766

Taylor series and restart 0.6224

Table 2: Sample rates for different strategies on Newton’s method. Eccentricity
e = 0.95

There are many potential improvements for future work. One is to apply a

clustering algorithm. This would improve problems with the local optima and get

better overall estimates. Another is to consider a nonlinear change of variables

that would eliminate the problems with angles.

52



6 Inference Problems with Stochastic Dynamics

The next problem I consider is inference problems with stochastic dynamics. I

create numerical solutions to stochastic differential equations, and make noisy ob-

servations of the numerical solutions. I then estimate the coefficients from these

noisy observations. The noise in the solution itself creates new difficulties that are

not present with deterministic dynamics.

6.1 Model

The setup is as follows. Let N denote the total dimension of the sample, X the

state variable and NX the number of X components. Let Y denote the observation

and NY its dimension. Also, denote the number of model parameters as Nθ and

the number of steps in the path as Nsteps.

Each sample also keeps a path X(1) . . . X(Nsteps) for the solution of the dynam-

ics. The total dimension of the state variable is N = Nθ+Nsteps, which includes all

the parameters and the state at each discrete time. The initial condition X(0) is

fixed and known throughout. Let f describe the deterministic part of the dynamics

and g the deterministic part of the observation.

6.1.1 Dynamics

The dynamics evolves according to the SDE

dX = −aXdt+ σdW

where dW is Brownian motion.

53



The observations are given

Y = bX + ζZ

where Z ∼ N(0, 1). All observation noise is assumed to be independent.

6.1.2 Prior

I use a uniform prior

P (θ) ∝ 1

if θ is in a particular range. The range is problem specific, with defaults shown in

table 3.

min max
a -10 10
σ 0 10
b -10 10
ζ 0 10
X -100 100

Table 3: Default boundaries for the uniform prior

As discussed below, changes to these boundaries can make a big difference in

convergence and accuracy.

6.1.3 The likelihood function P (D|θ)

Define Xj,pred to be the deterministic model update by integrating the deterministic

part of the dynamics. The initial condition for this timestep is the previous sample

value. Define Xj(t) to be the current value in the sample. Define Yj,pred(t) =

g(Xj(t)). This is the no-noise prediction for the given dynamics. It is dependent

54



on the X in the current sample according to the observation model. Define Yj,obs(t)

is the true noisy observation at the same time. Finally, define h to be the timestep

for the dynamics.

The distribution is given

P (D|θ) ∝ 1

(σ1 . . . σNX
)Nsteps

1

(ζ1 . . . ζNY
)Nobs

exp

[
− 1

2

(
Nsteps∑
t=1

NX∑
j=1

(Xj,pred(t)−Xj(t))
2

hσ2
j

+

Nobs∑
tobs=1

NY∑
j=1

(Yj,pred(tobs)− Yj,obs(tobs))2

ζ2
j

)]

The double sums are for the components of X and Y . Also the h in the X

component is a constant. It does not appear in the leading coefficient because it

is absorbed into the proportionality.

The de-normalized log of the distribution is given

l(D|θ) =

− (Nsteps)

NX∑
j=1

log(σj) − (Nobs)

NY∑
j=1

log(ζj)

− 1

2

(
Nsteps∑
t=1

NX∑
j=1

(Xj,pred(t)−Xj(t))
2

hσ2
j

+

Nobs∑
tobs=1

NY∑
j=1

(Yj,pred(tobs)− Yj,obs(tobs))2

ζ2
j

)

This is the form used in experiments.

55



6.1.4 Distribution to sample

As before, I use the standard setup for inference problems

P (θ|D) =
P (θ) P (D|θ)

P (D)

The value P (D) is a constant, unknown and ignored.

6.2 Results

Posterior sampling correctly finds the parameters on many problems, but conver-

gence and accuracy are problem dependent. The numerical values of the parame-

ters have high influence on convergence and histogram quality. The sampler is also

sensitive to initial conditions. The contribution of the Brownian motion term at

each step is O(
√

∆t). Depending on parameters, this is much larger than O(∆t),

which is the order of the drift term. However, the size of the drift term depends on

X. If X is large, then for some time the solution is very close to exponential decay.

Empirically, this helps the sampler obtain better estimates and cleaner peaks.

First I look at a simple one dimensional problem. The initial condition is

numerically large to show the best example possible.

The parameters for this run are as follows. The initial condition X(0) = 100.0.

The observation frequency is 1 and 40 observations were made. This run was per-

formed with a chain length of 200 thousand. Simulated annealing was run with

a cooling schedule of 1/20, . . . 1/2, 1. Each temperature of the cooling schedule is

run for 50 thousand steps. The burn-in is run for 1.0 million steps. The number

of walkers is 2048 and work-group size is 64. The sample rate is 10.17 M sam-

ples/second for kernel time and 1.02 M samples/second for total time. The reason

56



for this large disparity is that very long simulated-annealing and burn-in were run.

The tuning parameter a is 1.40. The acceptance rate is 0.361.

Table 4 shows some statistics about the parameters estimated.

57



true est max likelihood mean 68% CI 95% CI std dev autocorr time
a 2.000 1.986 1.988 ± 1.390e-06 ± 2.780e-06 0.000063 969.3
σ 1.000 1.140 1.410 ± 3.408e-05 ± 6.816e-05 0.001542 3830.6
b -2.000 -1.973 -1.975 ± 7.871e-07 ± 1.574e-06 0.000036 1121.0
ζ 1.000 1.141 1.108 ± 1.511e-05 ± 3.023e-05 0.000684 2425.4

Table 4: Estimates of parameters and confidence intervals for SDE. Initial conditions far from steady state makes for
accurate estimates.

58



Figure 15 shows correct histograms on a one dimensional problem. The ranges

are selected dynamically. If a sample is far from most of the probability mass,

then the plot is shown over a wide range. This is why the ranges are large and the

distributions appear sharply peaked.

The histograms for σ and ζ show bias above the true value. Both variables

are restricted in the prior to be nonnegative since they represent variance. The

restriction causes both terms to overestimate the noise, both in the mean and es-

timated maximum likelihood from the histograms. This is the same mathematical

phenomena seen in section 4, though the physical motivation of entropic repulsion

is not relevant here.

59



1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
0

2

4

6

8

10

12
Histogram of "a"

f 
h

a
t

a

 

 

Histogram

True value

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Histogram of "σ"

f 
h

a
t

σ

 

 

Histogram

True value

−2.1 −2.05 −2 −1.95 −1.9 −1.85 −1.8 −1.75
0

2

4

6

8

10

12

14

16

18

20
Histogram of "b"

f 
h

a
t

b

 

 

Histogram

True value

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Histogram of "ζ"

f 
h

a
t

ζ

 

 

Histogram

True value

Figure 15: Posterior histograms on a one dimensional SDE

Figure 16 shows more detail around the central region. This is the same sam-

pling as figure 15, but shows more detail around the region of maximum likelihood.

Visual inspection of the histograms reveals skewness and bias. Thus, the posterior

means are not exactly the true value.

60



1.85 1.9 1.95 2 2.05 2.1
0

2

4

6

8

10

12
Detail of "a" histogram around max likelihood

f 
h

a
t

a

 

 

Histogram

True value

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Detail of "σ" histogram around max likelihood

f 
h

a
t

σ

 

 

Histogram

True value

−2.02 −2 −1.98 −1.96 −1.94 −1.92 −1.9
0

2

4

6

8

10

12

14

16

18

20
Detail of "b" histogram around max likelihood

f 
h

a
t

b

 

 

Histogram

True value

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Detail of "ζ" histogram around max likelihood

f 
h

a
t

ζ

 

 

Histogram

True value

Figure 16: Details of posterior histograms on a one dimensional SDE

The second experiment shows the dependence on initial conditions. This exper-

iment is identical to the previous one except for initial conditions, but the results

are less accurate.

The parameters for this run are as follows. The initial condition X(0) = 10.0.

The observation frequency is 1 and 40 observations were made. This run was

performed with a chain length of 200 thousand. Simulated annealing was run with

a cooling schedule of 1/20, . . . 1/2, 1. Each temperature of the cooling schedule

is run for 100 thousand steps. The burn-in is run for 2.0 million steps. The

number of walkers is 2048 and work-group size is 64. The sample rate is 10.13 M

61



samples/second for kernel time and 0.54 M samples/second for total time. The

reason for this large disparity is that very long simulated-annealing and burn-in

were run. The tuning parameter a is 1.40. The acceptance rate is 0.359.

Table 5 shows some statistics about the parameters estimated.

62



true est max likelihood mean 68% CI 95% CI std dev autocorr time
a 2.000 1.823 1.934 ± 2.876e-05 ± 5.752e-05 0.001301 2935.6
σ 1.000 1.250 1.560 ± 2.205e-05 ± 4.411e-05 0.000998 1202.4
b -2.000 -1.714 -1.758 ± 5.141e-06 ± 1.028e-05 0.000233 426.3
ζ 1.000 1.159 1.111 ± 1.148e-05 ± 2.296e-05 0.000520 1598.0

Table 5: Estimates of parameters and confidence intervals for SDE inference. Initial conditions near steady state for
larger standard deviations.

63



−2 −1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Histogram of "a"

f 
h

a
t

a

 

 

Histogram

True value

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Histogram of "σ"

f 
h

a
t

σ

 

 

Histogram

True value

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Histogram of "b"

f 
h

a
t

b

 

 

Histogram

True value

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Histogram of "ζ"

f 
h

a
t

ζ

 

 

Histogram

True value

Figure 17: Less accurate parameter estimates due to changes in initial conditions

The histograms are qualitatively similar to the previous case. However, the

estimates are less accurate. Also, variance of the marginal distributions are larger.

For example, the width of the peak on the a histogram in figure 17 is approximately

ten times larger than in figure 15.

This same problem fails entirely if the initial condition is set to one. The

sampler never finds correct drift and does not converge in a reasonable amount of

time.

This next experiment looks at dependence on parameters. Here, I set a = 0,

which is standard Brownian motion. However, this is a more difficult problem than

64



estimating Brownian motion, since the drift term is still in the model. The drift

is still of lower order if X is near zero. The issues with resolving the drift remain.

This is less true if initial conditions are larger.

Here we use a large initial condition for clean results. Results for numerically

smaller initial conditions are similar but less estimates get progressively worse. If

initial conditions are zero, then the sampler still fails to converge.

The parameters for this run are as follows. The initial condition X(0) = 25.0.

The observation frequency is 1 and 40 observations were made. This run was per-

formed with a chain length of 200 thousand. Simulated annealing was run with

a cooling schedule of 1/20, . . . 1/2, 1. Each temperature of the cooling schedule is

run for 50 thousand steps. The burn-in is run for 1.0 million steps. The number

of walkers is 2048 and work-group size is 32. The sample rate is 10.11 M sam-

ples/second for kernel time and 1.02 M samples/second for total time. The reason

for this large disparity is that very long simulated-annealing and burn-in were run.

The tuning parameter a is 1.40. The acceptance rate is 0.355.

Table 6 shows some statistics about the parameters estimated.

65



true est max likelihood mean 68% CI 95% CI std dev autocorr time
a 0.000 0.011 0.015 ± 1.288e-06 ± 2.576e-06 0.000058 1274.0
σ 1.000 1.146 1.460 ± 1.099e-05 ± 2.198e-05 0.000497 359.8
b 1.000 1.023 1.025 ± 1.250e-06 ± 2.500e-06 0.000057 1982.1
ζ 0.500 0.572 0.534 ± 8.336e-06 ± 1.667e-05 0.000377 2720.9

Table 6: Estimates of parameters and confidence intervals with no drift term

66



−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

12

14

16
Histogram of "a"

f 
h

a
t

a

 

 

Histogram

True value

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Histogram of "σ"

f 
h

a
t

σ

 

 

Histogram

True value

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
0

2

4

6

8

10

12

14

16
Histogram of "b"

f 
h

a
t

b

 

 

Histogram

True value

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

2.5

3

3.5

Histogram of "ζ"

f 
h

a
t

ζ

 

 

Histogram

True value

Figure 18: Estimating coefficients for a = 0, or Brownian motion

This plot required more manual input to get clean results. With the standard

prior used in previous experiments the sampler did not perform well. The his-

tograms had local optima which remained after very long burn-in and simulated

annealing.

Better restrictions on the prior improved results. Regions that have a strong

local minima in probability can be very difficult to cross. Here there is local minima

is around b = 0, because if b was zero then there would be no observations. I

changed the prior to restrict b to be nonnegative. This greatly improved the

results. Even with minimal burn-in and simulated annealing, the peaks are clear

67



and in the correct location and extraneous local optima disappear quickly. In some

situations where a coefficient is completely unknown, it might not be possible to

make such restrictions. However, if analysis can be done to better restrict the

coefficients, this can make a big difference.

This final experiment looks at effects of dimension scaling. Higher dimensions,

regardless of the problem, generally show increased autocorrelation time. More

observations should create a have lower posterior variance. To examine this, one

hundred observations are made. A subset is used at each time to change the

dimension of the MCMC without chaining the problem. The run length is 800

thousand. Simulated annealing is run with a cooling schedule of 1/20 . . . 1/2, 1 for

50 thousand steps each. Burn-in is run for one million steps. The parameter a is

set to 1.4.

Figure 19 shows the scaling of autocorrelation time and variance. The autocor-

relation time appears noisy. It ranges from around 1800 to 7200 with no obvious

pattern. The variance on the order of .2 throughout, with no obvious pattern. The

changes in variance are negligible as the problem is scaled.

40 50 60 70 80 90 100 110
1000

2000

3000

4000

5000

6000

7000

8000

Total problem dimension

τ

Scaling of autocorrelation time

40 50 60 70 80 90 100 110
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

Total problem dimension

v
a

ri
a

n
c
e

Scaling of posterior variance

Figure 19: Scaling of autocorrelation time and posterior variance with changes in
dimension

68



6.3 Future work

In the future, I would like to investigate more difficult and chaotic dynamical

systems. I take the true dynamics, but produce data for chaotic system with first

order method and see if parameters can be found. Sometimes, noise is added to the

dynamics as well. One such system is the Lorenz attractor. The system depends

on three parameters, σ, ρ, β, all positive.

dX1 = a1(X2 −X1) dt + σ1dW

dX2 = X1(a2 −X3)−X2 dt + σ2dW

dX3 = X1X2 − a3X3 dt + σ3dW

where (a1, a2, a3) = (σ, ρ, β). One standard set of coefficients is σ = 10, β =

8/3, ρ = 28.

I use the same noisy observation model as in the SDE case.

Y1 = b1X1 + ζ1Z

Y2 = b2X2 + ζ2Z

Y3 = b3X3 + ζ3Z

where Z are independent N (0, 1).

For this problem, the sampler fails completely. This will have to remain as

future work.

69



References

[1] Chen, J. P., and Ugurcan, B. E. Entropic repulsion of gaussian free field

on high-dimensional sierpinski carpet graphs. arXiv preprint arXiv:1307.5825

(2013).

[2] Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J.

emcee: The MCMC Hammer. ArXiv e-prints (Feb. 2012).

[3] Goodman, J., and Weare, J. Ensemble samplers with affine invariance.

Commun. Appl. Math. Comput. Sci. 5 (2010), 65–80.

[4] Green, P. J., and Mira, A. Delayed rejection in reversible jump Metropolis-

Hastings. Biometrika (2001), 1035–1053.

[5] Hou, F., Goodman, J., Hogg, D. W., Weare, J., and Schwab, C. An

affine-invariant sampler for exoplanet fitting and discovery in radial velocity

data. The Astrophysical Journal 745, 2 (2012), 198.

[6] Kalos, M. H., and Whitlock, P. A. Monte Carlo methods. Vol. 1: basics.

Wiley-Interscience, New York, NY, USA, 1986.

[7] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller,

A. H., and Teller, E. Equation of State Calculations by Fast Computing

Machines. Journal of Chemical Physics 21 (June 1953), 1087–1092.

[8] Nikolaisen, I. U. ranluxcl v1.3.1, 2011.

https://bitbucket.org/ivarun/ranluxcl/.

70



[9] Nvidia Corp. GeForce GTX 590 Specifications, 2013.

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-

590/specifications.

71


